Skip to content

Boltz-2 Protein-Ligand Complex Prediction

Predicts the structure and binding affinity of protein-ligand complexes using the Boltz-2 model. Supports both separate protein/ligand inputs and pre-formed complex PDBs.

Quick Start

  1. Select input mode: separate components or complex PDB.
  2. Provide protein (A3M or FASTA) and ligand (SMILES or CCD) or upload a complex PDB.
  3. Set prediction parameters as needed.
  4. Run the node to obtain predicted structures, confidence, and affinity scores.

Setup Guide

1. Prepare Inputs

  1. Choose input mode: separate_components (default) or complex_pdb.
  2. For separate_components, provide:
  3. Protein sequence (A3M or FASTA)
  4. Ligand (SMILES string or CCD code)
  5. For complex_pdb, upload a pre-formed protein-ligand complex PDB.

2. Configure Prediction

  1. Adjust optional parameters (recycling steps, diffusion samples, output format, etc.) as needed.
  2. Enable or disable binding affinity prediction.

Basic Usage

Predicting Protein-Ligand Complex Structure

  • Use separate_components mode for de novo prediction from sequence/MSA and ligand.
  • Use complex_pdb mode to refine or score an existing complex.
  • Adjust recycling_steps for quality vs. speed.
  • Set diffusion_samples >1 for diverse predictions.

Configuration

Required Inputs

Field Description Type Example
input_mode Input mode: separate components or PDB STRING separate_components
seed Random seed for reproducibility INT 42

Optional Inputs

Field Description Type Example
protein_input_type Protein input type: a3m or fasta STRING a3m
protein_a3m Protein MSA (single-entry dict) A3M {"A": "..."}
protein_fasta Protein FASTA sequence FASTA ">A\nMKT..."
ligand_type Ligand input type: smiles or ccd STRING smiles
ligand_smiles Ligand SMILES string STRING CCO
ligand_ccd Ligand CCD code STRING ATP
complex_pdb Pre-formed protein-ligand complex PDB {"complex": "..."}
recycling_steps Number of recycling iterations INT 3
diffusion_samples Number of structure samples to generate INT 1
predict_affinity Predict binding affinity BOOLEAN True
use_potentials Use potentials for improved quality BOOLEAN False
output_format Output format: pdb or mmcif STRING pdb

Outputs

Field Description Example
structures.pdb Predicted protein-ligand complex structures {"A": "..."}
confidence.json Confidence scores for predictions {"A": 0.92}
affinity.json Predicted binding affinity metrics {"A": -7.1}

Best Practices

Input Preparation

  • Use high-quality MSA (A3M) for best structure prediction results.
  • Provide chemically valid SMILES or correct CCD codes for ligands.

Parameter Tuning

  • Increase recycling_steps for higher accuracy (at the cost of speed).
  • Use multiple diffusion_samples to explore structural diversity.

Troubleshooting

Common Issues

  • Missing or invalid input: Ensure all required fields are provided and correctly formatted.
  • Low confidence or affinity scores: Try increasing recycling steps or providing better MSA/ligand data.
  • Affinity prediction fails: Confirm ligand is present and correctly specified.

Need Help?

  • Contact support for further assistance.