Boltz-2 Protein-Ligand Complex Prediction
Predicts the structure and binding affinity of protein-ligand complexes using the Boltz-2 model. Supports both separate protein/ligand inputs and pre-formed complex PDBs.
Quick Start
- Select input mode: separate components or complex PDB.
- Provide protein (A3M or FASTA) and ligand (SMILES or CCD) or upload a complex PDB.
- Set prediction parameters as needed.
- Run the node to obtain predicted structures, confidence, and affinity scores.
Setup Guide
- Choose input mode:
separate_components
(default) or complex_pdb
.
- For
separate_components
, provide:
- Protein sequence (A3M or FASTA)
- Ligand (SMILES string or CCD code)
- For
complex_pdb
, upload a pre-formed protein-ligand complex PDB.
- Adjust optional parameters (recycling steps, diffusion samples, output format, etc.) as needed.
- Enable or disable binding affinity prediction.
Basic Usage
Predicting Protein-Ligand Complex Structure
- Use
separate_components
mode for de novo prediction from sequence/MSA and ligand.
- Use
complex_pdb
mode to refine or score an existing complex.
- Adjust
recycling_steps
for quality vs. speed.
- Set
diffusion_samples
>1 for diverse predictions.
Configuration
Field |
Description |
Type |
Example |
input_mode |
Input mode: separate components or PDB |
STRING |
separate_components |
seed |
Random seed for reproducibility |
INT |
42 |
Field |
Description |
Type |
Example |
protein_input_type |
Protein input type: a3m or fasta |
STRING |
a3m |
protein_a3m |
Protein MSA (single-entry dict) |
A3M |
{"A": "..."} |
protein_fasta |
Protein FASTA sequence |
FASTA |
">A\nMKT..." |
ligand_type |
Ligand input type: smiles or ccd |
STRING |
smiles |
ligand_smiles |
Ligand SMILES string |
STRING |
CCO |
ligand_ccd |
Ligand CCD code |
STRING |
ATP |
complex_pdb |
Pre-formed protein-ligand complex |
PDB |
{"complex": "..."} |
recycling_steps |
Number of recycling iterations |
INT |
3 |
diffusion_samples |
Number of structure samples to generate |
INT |
1 |
predict_affinity |
Predict binding affinity |
BOOLEAN |
True |
use_potentials |
Use potentials for improved quality |
BOOLEAN |
False |
output_format |
Output format: pdb or mmcif |
STRING |
pdb |
Outputs
Field |
Description |
Example |
structures.pdb |
Predicted protein-ligand complex structures |
{"A": "..."} |
confidence.json |
Confidence scores for predictions |
{"A": 0.92} |
affinity.json |
Predicted binding affinity metrics |
{"A": -7.1} |
Best Practices
- Use high-quality MSA (A3M) for best structure prediction results.
- Provide chemically valid SMILES or correct CCD codes for ligands.
Parameter Tuning
- Increase
recycling_steps
for higher accuracy (at the cost of speed).
- Use multiple
diffusion_samples
to explore structural diversity.
Troubleshooting
Common Issues
- Missing or invalid input: Ensure all required fields are provided and correctly formatted.
- Low confidence or affinity scores: Try increasing recycling steps or providing better MSA/ligand data.
- Affinity prediction fails: Confirm ligand is present and correctly specified.
Need Help?
- Contact support for further assistance.